Weather Forecast using Learning Vector Quantization Methods

Authors

  • Siska Andriani Universitas Pakuan
  • Kotim Subandi Universitas Pakuan

DOI:

https://doi.org/10.21070/pssh.v1i.22

Keywords:

Learning Vector Quantization Methods, Weather Forecast

Abstract

Weather forecasting is one of the important factors in daily life, as it can affect the activities carried out by the community. The study was conducted to optimize weather forecasts using artificial neural network methods. The artificial neural network used is a learning vector quantization (LVQ) method, in which artificial neural networks based on previous research are suitable for prediction. The research is modeling weather forecast optimization using the LVQ method. Models with the best accuracy can be used in terms of weather forecasts. Based on the results of the training that has been done in this study produces the best accuracy on the LVQ method which is to produce 72%.

References

Gibbs. 1987. Pengertian Cuaca.

A. Kustiyo, A. Buono, N. Apriyanti. 2006. Optimasi Jaringan Syaraf Tiruan dengan Algoritma Genetika untuk Peramalan Curah Hujan. Jurnaillmiah IImu Komputer. Edisi 6 Nol.4 No.1; 1-9.

K. Widyawati, B.D. Setiawan, P.P Adikara. T. 2018. Optimasi Vektor Bobot Learning Vector Quantization Menggunakan Algoritme Genetika untuk Penentuan Kualitas Susu Sapi. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer. Vol. 2, No. 1, Januari 2018, hlm. 217-225.

S. Kusumadewi. 2004. Membangun Jaringan Syaraf Tiruan menggunakan Matlab dan Excell Link. Penerbit Graha Ilmu.

D. M. Wuryandari, I. Afrianto. 2012. Perbandingan Metode Jaringan Syaraf Tiruan Backpropagation Dan Learning Vector Quantization Pada Pengenalan Wajah.

J. Han, M. Kamber, J. Pei. 2012. Data Mining: Concept and Techniques. Ed ke-3. Amsterdam (NL): Elsevier, Morgan Kaufmann

Downloads

Published

2021-03-02

How to Cite

Andriani, S., & Subandi, K. . (2021). Weather Forecast using Learning Vector Quantization Methods. Procedia of Social Sciences and Humanities, 1, 69–74. https://doi.org/10.21070/pssh.v1i.22